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Examples of the use of the approximate method in solution of nonstationary heat-conduction problems are
given. The error of this method is evaluated by comparison with exact solutions; it turns out to be several
orders of magnitude smaller than the error in finite-difference methods. Recommendations on employment of
the method are given on the basis of the numerical experiments conducted.

An approximate numerical-analytical method using which eigenfunctions and eigenvalues are found has been
proposed in [1]. Having the apparatus of eigenfunctions and eigenvalues, one can obtain solutions for various nonsta-
tionary problems that are of importance in heat-conduction theory. We consider the application of this method to de-
termination of eigenfunctions and eigenvalues, which is closely related to solution of the simplest boundary-value
problem for a certain curvilinear region Ω with boundary Γ:

ut = a∆u ,   u Γ = 0 ,   u t=0
 = f (x, y) . (1)

Using the method of superpositions of one-dimensional solutions for eigenfunctions, we have obtained the integral ex-
pression [1]

Ri = ∫ 
0

π

[Ai
∗
 (θ) cos (λiξ (θ)) + Bi

∗
 (θ) sin (λiξ (θ))] dθ . (2)

If we replace the integral by the integral sum, we will have

Ri =  ∑ 

j=1

m

 [Aij cos λiξj + Bij sin λiξj] .
(3)

The eigenfunctions and eigenvalues Ri and λi are found from the homogeneous integral equation

 ∫ 
0

π

[Ai
∗
 (θ) cos (λiξΓ) + Bi

∗
 (θ) sin (λiξΓ)] dt = 0 ,   ξΓ = (rΓ − r0) n , (4)

where rΓ is the radius vector of the points of the boundary Γ, or from the analog of Eq. (4) represented by the inte-
gral sum and having the form of a homogeneous system of linear algebraic equations for Aij and Bij:

  ∑ 

j=1

m

 [Aij cos λiξjk + Bij sin λiξjk] = 0 ,   k = 1, V, ..., 2m ,   i = 1, V, ..., ∞ , (5)
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here ξik = (rk − r0)nj, rk being the radius vectors of the points of division of the boundary Γ into small parts. By so-
lution of system (5), we find λi, Aij, and Bij. Substituting them into (3), we obtain Ri; then the solution of problem
(1) can be represented by the expression

u =  ∑ 

i=1

∞

 CiRi exp (− aλi
2
t) ,   Ci = 


∫
Ω
∫ f (x, y) Rids


  ⁄  ∫Ω∫ Ri

2
 ds


 . (6)

Thus, for construction of the approximate solution (6) we must precompute the spectra 


λi




 and 



Ri




 using (3)

and (5). It is seen from formula (6) that the accuracy of computation of u is determined by the error for λi and Ri,
which rapidly decreases with increase in t. Therefore, in what follows we will evaluate the error only for λi and Ri
and partial derivatives of Ri of different order with respect to the coordinate x.

If we consider problem (1) for a plane wall (0 ≤ x ≤ h), the solution found by this method will exactly coin-
cide with the solution obtained by the Fourier method. We investigate (1) for the region of a regular triangle with
height h when f(x, y) = 1. For this case we know the exact solution [2]:

u =  ∑ 

n=1

∞

 
2

πn
 



sin 2πn 

ξ1
∗

h
 + sin 2πn 

ξ2
∗

h
 + sin 2πn 

ξ3
∗

h




 exp  




− 




2nπ
h





2

 at



 ,

ξi
∗
 = (r − ri

∗ ) ni
∗
 ,   i = 1, 2, 3 .

(7)

According to the method, the number of division points at the boundary of the triangle Γ must be even; furthermore,
it is divisible by three because of the triple symmetry. Therefore, the taken number of division points should be divis-
ible by six and that of the rays E should be divisible by three. Numerical experiments have shown that if, among the
set of rays E, there are three rays directed perpendicularly to the sides of the triangle, in this case the approximate
solution will coincide with the exact solution from (7).

From the above two cases it follows that sometimes this approximate method allows exact solutions, whereas
all the existing finite-difference methods lead to an approximate solution with the possibility of computing only low-
order partial derivatives of the functions sought [3].

We can make the following statement: if we are able to solve the homogeneous integral equation (4), the su-
perposition method yields the exact solution (6). The exactness is determined by the error in replacement of integrals
(2) and (4) by the integral sums (3) and (5). Let us demonstrate this, using as an example problem (1) on cooling of
a solid cylinder of radius r0 = 1 with an initial temperature of f(x, y) = 1. The problem has the following exact solu-
tion [4]:

u = 2  ∑ 

j=1

∞

 
J0 (λjr

 ⁄ r0)

λjJ1 (λj)
 exp 







− 

aλj
2

r0
2  t







 . (8)

In constructing the approximate solution of (3) for the eigenfunctions Ri, we must select a computational
scheme consisting of the pole r0, the system of rays E drawn through the pole at angles θi to the x axis, and the sys-
tem of points rk by which the boundary Γ is divided into small parts.

The origin of coordinates (x, y) will be located at the center of a circle where the pole r0 = 0 will find itself.
To simplify the computations we divide the circle into p equal sectors by the rays E. In this problem, for equal dis-
tance from the origin of coordinates r on each ray the eigenfunctions Ri must take equal values, namely:

Ai
∗
 (θ) = Ai

∗
 = const ,   Bi

∗
 (θ) = Bi

∗
 = const ,   A1i = A2i = ... = Ami = Ai ,   B1i = B2i = ... = Bmi = Bi . (9)

Furthermore, the diametrically opposite points M+ and M− of the circle region correspond to the values of ξ with op-
posite signs, i.e., ξ(M+) = −ξ(M−). In this case we have Ri(M

+) = Ri(M
−); therefore, the coefficients before sin (λiξ(θ))

and sin (λiξj) in expressions (2) and (3) must be equal to zero:
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Bi
∗
 (θ) = B1i = B2i = ... = Bmi = Bi = 0 . (10)

The results of relations (9) and (10) can also be obtained numerically by solution of system (5) without any
preliminary assumptions. According to the formulas x = r cos ϕ and y = r sin ϕ, we pass to a polar coordinate system

ξ = r cos (θ − ϕ) ,   ξΓ = r0 cos (θ − ϕ) ,   ξj = r cos (θj − ϕ) ,   ξjk = r0 cos (θj − ϕk) . (11)

Using (11) we transform expressions (2) and (3):

Ri = Ai ∫ 
0

π

cos [λir cos (θ − ϕ)] dθ ,   Ri = Ai  ∑ 

j=1

m

 cos [λir cos (θj − ϕ)] . (12)

By replacement of the variable θ − ϕ = τ, the expressions for Ri can be transformed to the form

Ri = Ai ∫ 
0

π

cos (λir cos θ) dθ ,   Ri = Ai  ∑ 

j=1

m

 cos (λir cos θj) . (13)

Let us use one integral form of representation of the Bessel function [5]:

J0 (z) = 
1

√π  Γ (1 ⁄ 2)
 ∫ 
0

π

cos (z cos t) dt . (14)

After the comparison of (12) and (14), we obtain that the solution in the form (2) exactly coincides with (8) and the
equation J0(λr) = 0 for finding the eigenvalues λi coincides with (4) when (9) and (10) hold. Therefore, expressions
(3) and (5) are their approximate analogs.

The results of numerical solution of system (4) with an accuracy of calculation of 200 decimal places after
the point that have been obtained without allowance for any simplifying assumptions on the properties of solution for
a circle are given in Tables 1 and 2. The errors of the eigenfunctions δRi and their partial derivatives have been de-
termined at Γ at the centers between division points. It is approximately at such points that the errors δRi take the
highest value. At the internal points of Ω, the errors decrease and the accuracy is further improved.

Table 1 gives the errors for eigenvalues δλi as a function of m. It follows from the table that when 50 rays
and accordingly 100 points of division of Γ are employed, we can compute 24 eigenfunctions λi and Ri with a high
degree of accuracy. Whereas the errors are very small for λ1 and R1, the errors δλi and δRi monotonically increase

TABLE 1. Error for the Eigenvalues as a Function of the Number of Computational Points

m δλ1 δλ2 δλi

20 10–45 10–30 max i = 8, δλ8 = 10–6

30 10–77 10–55 max i = 13, δλ13 = 10–6

50 10–150 10–114 max i = 24, δλ24 = 10–6

TABLE 2. Error for the Eigenfunctions and Partial Derivatives as a Function of the Number of Computational Points

m δR1 δR2 δR1x δR2x δR1xx δR2xx δR1xxxx δR2xxxx

20 10–45 10–30 10–43 10–29 10–42 10–27 10–39 10–24

50 10–150 10–114 10–148 10–112 10–146 10–110 10–142 10–106
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with increase in the number i. However, this drawback is partially suppressed, since the influence of the eigenfunction
Ri decreases by virtue of the convergence of spectral decompositions as i increases.

We can infer that when 2m points of division of Γ, where m > 30, are employed, this method allows compu-
tations of approximately m/2 eigenvalues and eigenfunctions with an accuracy no lower than 10−6. As m increases, all
the errors rapidly decrease; thus, we have C10−3m for δλ1. Not only does selection of m depend on the error δRi but
it also depends on the number of terms in the spectral decomposition that are required for maintaining the prescribed
accuracy.

Table 2 gives the errors for partial derivatives at the boundary points on the x axis. It is clear from the table
that each two partial derivatives increase the error by approximately three orders of magnitude. Nonetheless, the errors
are very small even for the fourth partial derivative. The influence of the location of the pole r0 on the computational
error is slight.

The numerical experiments have shown that if no assumptions on the symmetry of solution for the circle re-
gion are made, i.e., if the general case is considered, the eigenfunctions and eigenvalues corresponding to all orders of
the Bessel functions of the first kind are automatically determined from system (5). Spectral decomposition of the in-
itial condition of problem (1) itself will "select" necessary eigenfunctions orthogonal in Ω, which has also been
checked.

It is clear from the given tables that the accuracy of the method is high and we can compute partial deriva-
tives of high order with it. Furthermore, the computational process in this method is much less labor-consuming than
that in finite-difference schemes. Also, it is noteworthy that the approximate solution here has an analytical form and
exactly satisfies the initial differential equation, the initial condition, and the boundary conditions at the points of di-
vision of the boundary Γ into small parts. The boundary conditions hold approximately just at the points of the bound-
ary between the division points.

Based on the numerical experiments, we have obtained the following recommendations on application of this
method:

1. To implement the method one must first select a computational scheme that consists of the pole r0, the
rays E, and the points rk of division of the boundary Γ of a given region Ω into small parts.

2. The location of the pole r0 relative to the region Ω for which the solution is sought has no influence, in
practice, on the value of the error.

3. To compute the eigenvalues λi one investigates the function y = ∆2m(λ) representing the determinant of
system (5). The points of intersection of the λ axis are the roots of the equation ∆2m(λ) = 0. For a small number 2m
of points of division of Γ, when information on the shape of the region Ω is insufficient, Eq. (14) will have false
roots whose characteristic feature is their mobility, i.e., they significantly shift along the λ axis with increase in 2m.
For each region Ω we have a certain minimum number 2m1 of points of division of Γ, when the first reliable eigen-
value λ1 appears (with a certain error), which depends on the shape and dimensions of Ω. A characteristic property of
this root of λ1 is its relative stability, i.e., several figures of this root remain constant with increase in m, whereas in
the interval (0, λ1), there are no false moving roots. For any m we have a certain finite number N of eigenvalues such
that λ1, V, ..., λn are reliable. In addition to the stability of the values, similar eigenvalues have one more charac-
teristic property: there are no false moving roots between any two eigenvalues λi−1 and λi (1 ≤ i ≤ N).

4. If the curvilinear boundary Γ has a rectilinear portion, the accuracy of the method is improved when one
ray E is directed along the normal to the rectilinear portion.

5. If the boundary Γ has angular points, they must be included in the system of division points.

NOTATION

a, thermal diffusivity, m2/sec; Ai
∗  and Bi

∗ , unknown functions; Aij and Bij, unknown coefficients; Ci, coeffi-
cients of special decomposition; f(x, y), initial temperature, K; h, height of the triangle, m; J0 and J1, Bessel functions
of the first kind; M+ and M−, diametrically opposite points of the circle; m, number of rays E; n, natural number; n
and nj, unit vectors; ni

∗ , internal unit vectors to the sides of the triangle; r, r0, rΓ, and rk, radius vector of an arbitrary
point from Ω, of the pole, of arbitrary points at Γ, and of the points of division of Γ into small parts, m; ri

∗ , radius
vectors of the vertices of the triangle, m; r, polar radius, m; r0, radius of the cylinder, m; t, time, sec; u, temperature,
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K; x and y, Cartesian coordinates; z, auxiliary variable; Ω and Γ, region and its boundary; ∆2m, determinant of the sys-
tem of 2m linear equations; Γ(1/2), gamma function of 1/2; δλi and δRi, errors of computations of the eigenvalues and
eigenfunctions; θ, slope of the rays E to the x axis; λi and Ri, eigenvalues and eigenfunctions; ξ, ξj, and ξjk, special
variables, m; ξ1

∗ , ξ2
∗ , and ξ3

∗ , special variables for the regular triangle, m; ϕ, polar angle. Subscripts: i, Nos. of eigen-
values and eigenfunctions; j, Nos. of terms in the finite sum; k, Nos. of points of division of the boundary Γ.
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